- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Oxley, Jimmie (3)
-
Filikhin, Igor (2)
-
Vlahovic, Branislav (2)
-
Zatezalo, Tanja (2)
-
Busby, Taylor (1)
-
Flanigan, Patrick (1)
-
Karoui, Abdennaceur (1)
-
Sheehan, Pam (1)
-
Smith, James (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The coupled electronic states in two-dimensional (2D) and three-dimensional (3D) double quantum dot (DQD) systems are investigated using a phenomenological model applied to InAs/GaAs heterostructures. The single-band k · p effective potential approach previously proposed by our group is employed to numerically calculate the energy spectrum and spatial localization of a single electron, serving as an indicator of the coupling strength within the binary system. For identical quantum dots (QDs) in a DQD, the electronic states exhibit ideal coherence. We systematically vary the DQD geometry and the strength of the confinement potential (via an applied electric field) to examine the effects of symmetry breaking and the sensitivity of electron localization in both identical and nearly identical DQDs. Our results show that coherence in DQDs is highly sensitive to these subtle variations. This sensitivity can be harnessed to detect changes in the surrounding environment, such as fluctuations in chemical or electrical properties that affect the DQD system.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Filikhin, Igor; Vlahovic, Branislav; Zatezalo, Tanja; Karoui, Abdennaceur; Oxley, Jimmie (, Processes)We investigated the single-electron spectrum of an InAs/GaAs quantum dot (QD) using an effective potential model developed in previous studies. Our objective was to explore the limits of applicability of this model. We conducted numerical simulations, introducing a piezoelectric potential as a perturbation to the effective potential. The profile of this additional potential was derived from theoretical numerical studies presented in the literature. We analyzed the impact of variations in this profile within the framework of the perturbation theory. Our findings indicate that within a variation range of 25%, the effective potential model remains applicable.more » « less
-
Busby, Taylor; Smith, James; Sheehan, Pam; Oxley, Jimmie (, Propellants, Explosives, Pyrotechnics)The influence of additives on the detonation velocity of a polyethylene wax/RDX formulation was examined. Additives included species of various shock impedance: glass microballoons; glass microspheres; polymethyl methacrylate (PMMA) microspheres; thermally expandable microspheres (TEMs); and PMMA microencapsulated pentaerythritol tetranitrate (PETN). Performance of the insensitive explosive 2,4-dinitroanisole (DNAN) was enhanced by addition of PETN-either neat or encapsulated, but encapsulation did not increase the sensitivity of the formulation. The energy contribution of the encapsulated PETN to the detonation front of the insensitive explosive 2,4-dinitroanisole (DNAN) was also demonstrated. Present in 5 wt%, the encapsulated PETN allowed DNAN to sustain a reaction (5.36 km/s) at 13 mm, well below its critical diameter.more » « less
An official website of the United States government
